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Introduction

• Model diagnosis = comparison against observations.

• Model output and observational data sets are too large to 
make use of.

• Instead, reduce (compress) both sources to multivariate 
distribution estimates; compare distributions.

• Use tools of statistics and elementary probability to 
characterize discrepancies.

• Work in progress!
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Model Output and Observations

• Study area: Southern Great Plains (SGP) ARM (Atmospheric Radiation Measurement 
Program) site (north-central Oklahoma).

• Observations: vertical profiles of equivalent potential temperature (     ), equivalent 
saturation potential temperature (      ) at 35 atmospheric levels, every 30 minutes 
1999-2001.

• Model output: GFDL (Geophysical Fluid Dynamics Laboratory’s AM2 atmospheric 
model) vertical profiles of the same variables for the                     grid box containing 
the SGP site, at the same levels, every 20 minutes 1999-2001.
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Model Output and Observations

θe
= 35 measurements (levels) of      and 35 measurements 
   of       at time    for ARM.        θes

= 35 measurements (levels) of      and 35 measurements 
   of       at time    for GFDL.        θes

θe
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xt1,A

xt2,G

xt11,A,xt12,A,xt13,A, . . .

xt21,G,xt22,G,xt23,G, . . .

1:00:30 1:01:00 1:01:30

1:00:20 1:00:40 1:01:00

Temporal mismatch

How to compare?

Interpolate?
Aggregate?
Decimate?
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Data space
Geographic space

Preserve (approximately)
multivariate distribution at 
coarse spatial scale.

Estimating Multivariate Distributions
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• Entropy-constrained vector quantization (ECVQ; Chou, Lookabaugh and Gray, 
1989) modified for use as a data summarization algorithm.

• ECVQ can be seen as a clustering algorithm similar to K-means. Different loss 
function:

• Result: only as many clusters as necessary to describe the data, up to a 
maximum of K. (K-means always uses all K clusters.) Information-theoretic 
complexity of the data determines how many clusters.

• Strategy: apply ECVQ clustering to data in grid cell(s). Produces a set of cluster 
centroids and weights for each grid cell.

Estimating Multivariate Distributions

= multivariate data point

= centroid of cluster to which data point is assigned

= number of data points assigned to cluster with 
centroid y(xn)

L =
1

N

N
∑

n=1

[

‖xn − y(xn)‖2 + λ

(

− log
Ny(xn)

N

)]

xn

y(xn)

Ny(xn)
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Signal processing paradigm

Which λ?

Estimating Multivariate Distributions

h = −

K∑

k=1

Nk

N
log2

Nk

N

δ =
1

N

N∑

n=1

‖xn − y(xn)‖2
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Distributional Analysis
Visual Comparisons

ARM

GFDL

GFDL is more “complex”:

Same accuracy requires 
greater entropy.

Same entropy suffers 
greater distortion.

Rate-distortion plots for ARM and 
GFDL. 

Distortions 
most similar
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Distributional Analysis
Visual Comparisons
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Distributional Analysis
Visual Comparisons

ARM θe ARM θes

GFDL θes

GFDL θe

16 clusters

33 clusters

Summer
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Distributional Analysis
Visual Comparisons

ARM θe ARM θes

GFDL θes

GFDL θe

16 clusters

33 clusters

Summer
surface is

hot and dry

Model fails to
reproduce 
thunderstorms
triggered by 
eastward
propagation of 
convection
from Rockies.
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• Are the distributions of ARM and GFDL the “same”?

• Test the hypothesis that the GFDL distribution (     ) could have been 
obtained by sampling from a population that looks like the ARM 
distribution (     ). 

• Formulate a test statistic that measures the extent to which two 
distributions differ (                ).

• Do the following 100 times: 

• draw      data points randomly from the ARM distribution;

• cluster them to produce                            ;

• calculate                           , the similarity between      and     ;

• make a histogram of the      ‘s,                           ;

• If less than 5% of the histogram is greater than the actual                , 
then reject the hypothesis (at the 5% significance level).

Distributional Analysis: Hypothesis Testing

∆(P1, P2)

P1

N

P2

P ∗

1 , P ∗

2 , . . . , P ∗

100

∆∗

b = ∆(P1, P
∗

b )

b = 1, 2, . . . , 100∆
∗

b

P1 P
∗

b

∆(P1, P2)
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• A distance between distributions:

∆(π1,π2) = min
p12

K1∑

k1=1

K2∑

k2=1

‖y1k1
− y2k2

‖2
p12(y1k1

, y2k2
)

π1 = {(y1k1
,π1k1

)}K1

k1=1
π2 = {(y2k2

,π2k2
)}K2

k2=1

π11 π12 π13 π14

π21

π22

π23y23

y22

y21

y11 y12 y13 y14

p21 p24p23

p11 p12 p13
p14

p34p33p32p31

p22

‘s are fixed; fill in    ‘s  such that:π p

(1) constraints are satisfied
(2)      is minimized∆

π21 = p11 + p12 + p13 + p14

π22 = p21 + p22 + p23 + p24

π23 = p31 + p32 + p33 + p34

row constraints

π11 = p11 + p21 + p31

π12 = p12 + p22 + p32

π13 = p13 + p23 + p33

π14 = p14 + p24 + p34

column constraints

Distributional Analysis: Hypothesis Testing
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Distributional Analysis: Hypothesis Testing

Histogram of   ∆∗

b

Actual ∆(P1, P2) = 2.81

Reject the hypothesis;
ARM and GFDL 
distributions are not 
the same to within 
sampling variability.

Why?
Which parts of the distribution 
lead to rejection?
What physical processes do 
they correspond to?
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Distributional Analysis: Hypothesis Testing

Largest contributions to                 do ∆(P1, P2)

not correspond to largest distances.

“Inferred” joint distribution 
of ARM and GFDL

Shows how difficult the problem is!
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• Each cluster represents a distribution of values with mean vector = 
representative and dispersion = distortion.

• Markov’s Inequality bounds the probability of an observation being 
more distant from the mean than a given amount:                                                         

Distributional Analysis: Hypothesis Testing
An Alternate Approach

P (X > a) ≤
EX

a
X = ‖X − y(X)‖2

P (‖X − y(X)‖2
> 20δ) ≤ 0.05

, implies

Test a set of hypotheses: GFDL cluster j’s representative could 
have been drawn at random from ARM cluster i’s distribution...
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Distributional Analysis: Hypothesis Testing
An Alternate Approach

Red=reject
Blue=do not reject

How consistent with 
the first approach?

15

19

23

28

ARM

GFDL
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• GFDL clusters 15 and 28 below 2 km are not physical- 
too hot and too dry. Precipitation not handled properly.

• GFDL cluster 19: cloudy and unrealistically stable 
atmosphere.

• GFDL  cluster 23?

Distributional Analysis: Hypothesis Testing
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Conclusions

• Problem is to discover why model output and 
comparable data do not agree.

• Estimate discrete multivariate data distributions and 
compare them to isolate sources of discrepancy.

• Visual inspection is useful, but we need an “autonomous” 
method suitable for large data sets.

• Two approaches to hypothesis testing using discrete 
distributions- mixed results, but we are not finished.

• Thanks to ESTO and the AIRS and MISR projects their 
for support!


